Design and Analysis of Multi-Funtional Helmet for the Industries (An Ergonomics way)

A.V. PRADEEP *, R. SURYA KIRAN **

*(Department of Mechanical Engineering, Sankethika Vidya Parishad, Visakhapatnam-45,India) ** (Department of Industrial Production Engineering, GITAM University, Visakhapatnam-45,India)

ABSTRACT--The problem with the olden days engineering helmets was that engineers had to struggle a lot about the lighting system and moreover they had to work a lot to communicate to external work whatever they wanted to at work.but an initiative had been taken to build a helmet which could be a remedy to many of the problems faced by these engineers and ofcourse could be helpful in focussing the light wherever they want and whenever they want at the less effort and a continuous capturing and recording device is also attached to the helmet so that there is no extra effort required to be put in while at work. This project has been tested at the laboratory level and had been accomplished with the Pro-E and Ansys softwares .This works on the programming.Infact a model had been produced over here which could remove all the demerits of the modern days helmet and all the new features could be impregnated to modernize the olden helmets . Keywords - Designing, Manufacturing, Analysis,

programming,

I INTRODUCTION

Safety helmets with attached lights are used in various industries particularly science, technology, engineering and medical etc. In the olden days light was attached to the helmets but could not be adjustable from the user's point of view for the sake of convenience and safety also. In many areas of an science, technology, engineering and medical, it is desirable to have a helmet with an adjustable lighting system and camera to capture the running images apart from the normal focusing of the light alone .If the light could be focused onto some particular/specified area simultaneously images/videos should be captured which could be the retrieved online/offline for certain purposes is the main cause of thinking about this kind of project. Earlier in order to quickly change the desired focus of the light, user had to move his head to focus the light on the desired location and he had to had a camera separately to also capture the images . but always this is not good atall from the comfort and workmanship point of view and the society never accepts

any poor ergonomic condition like that. Therefore a model had been developed taking into account, the positive and the negative aspects of the present day helmets. Here the task was to DESIGN and suggest for a working model of a helmet with an attachable light and a camera system, in which position of the light and simultaneously the camera could be very well controlled by a remote controller . The designing of the parts was done in Pro/E, a 3D CAD software and control of remote was developed using the PLC programming, programmed in assembler/compiler which was later dumped into 8051 microprocessor. The motor considered for the movement was a stepper motor whose details are discussed in the later part of the literature . The camera for this purpose had been taken up as the standard ones available in the markets that are being used for the lap-tops or the cell phones. Finally the assembling of every sub components was done using Pro/E and the simulation of the model was also tested using pro/E. Meshing was done in HYPERMESH, a software which is used for precise meshing of components and finally analysis is carried out in ANSYS, and the results were depicted later.

I INTRODUCTION

The overall purpose of the work is to develop a model of the helmet with an attachable lighting system and a camera system which could be controlled using a remote control for ease and convenience of the user who can also capture the images/videos or even send the same to the needed at any time and any place.

In this work, a light as well as small camera embedded in the torch and powered by a battery packwhich could be worn by the user as a waist belt or as a backpack on the backwas developed. After the charge of the battery goes off, just the battery could be removed from the pack and could be recharged easily. The power of the battery is dependent upon the capacity of the camera and the light system used.

In the prior art, when the light was clipped to the helmet, light gets fixed to the helmet but position could not be adjusted. Change in area illuminated by the light could be accomplished only by the user moving his head position

A.V. PRADEEP, R. SURYA KIRAN/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 1, Issue 4, pp.1774-1784

and if the pictures were to be taken required both the involvement of the hands and a camera which becomes a tough role in most of the times. A circuit for operating (on/off) the camera or the lighting system or both simultaneously was also provided.

This development was done to cater to the needs of the "STEM" fields. S: SCIENCE T: TECHNOLOGY E: ENGINEERING M: MEDICINE.

In SCIENCE this concept could be applied in labs, research works etc. This work can be also used in dark room chemical testing, etc or wherever desired to focus the light onto a particular area and simultaneously to send the pictures either online or offline.

In TECHNOLOGY this product could be implemented in various areas such as trekking and climbing where helmets are highly/deadly essential. This development will provide satisfaction for users of caving as it serves in two ways such as, gives protection from falling rocks and bumps and to shine light on a required area as well as gives the videos and images which would be so exciting. This development finds perfect application in military as it is ideal for work such as navigation in night, loading gear and repairing equipment in the field where there is no light, could also be used to communicate as a web cam whenever necessary. It could also be used in SWAT purposes. It is apt in close quarters work such as map readings and document readings as it can also be used without power supply. Helmet with adjustable light and camera could also be applied in areas such as search and rescue operations such as fire rescue operations, which could be covered with live videos to make the job simple. This could also be used in search operations such as under lifts and collapsed buildings as well as volcanic and earthquake prone areas apart from the swimming and diving activities.. Helmets with lights embedded with camera can also find applications in archeology where exploration is done in dark space or no electricity areas.

In ENGINEERING field this helmet with an adjustable light embedded with a camera could be implemented in areas such as welding works where high intensity lights could assists the user to focus on the welded joints, which can be used for live study or tutorials. This helmet with light and camera could find application in construction works such as site works at night or in the villages having poor electricity connection for the site workers, with web coordination these improved versions of the helmets could benefit the society to the maximum extent possible. This concept could also be applied in engineering works such as painting where light is to be focused on some particular part. In workshed/Locosheds repair works such as under chassis repairs could be performed with this product, and low light underneath could also be overcome by using helmet with light and camer system arrangement. This could also be used in underwater constructions ,Tunneling, flyover constructions, pipeline constructions ,blasting operations, heavy engineering works, steel industries, chemical process industries, nuclear operations, etc. and with the videos and images which could be captured could also act as a database for the next generation of users also.

In MEDICINE, some tasks such as dark room operations or military operations requiring complex surgeries and facilities could also be make use of this as advanced laser lighting system attachments .. This concept of helmet with an adjustable light and camera could also be implemented in pharmacology and other related areas.

II DESCRIPTION OF COMPONENTS

Table-1 Details of the Project-Components

Sl No	Name of the part	Description of the Part	Materials Used
1	HELMET	Helmet is the major component used for safety and also holds the motor, connector for motor and	Helmet is made of High-density polyethylene (HDPE) or polyethylene high-density (PEHD), which is a polyethylene thermoplastic
		torch and torch.	made from petroleum.
2	GUIDE	Guide is attached to the helmet and it supports the motor to move in it. Guide contains teeth on which the motor teeth meshes and makes movement.	Guide is made up of Low- density polyethylen e (LDPE), which is a thermoplast ic made from petroleum.
3		YSTEM GEAR SYST L GEAR :	ГЕМ : 2 ⁰

A.V. PRADEEP, R. SURYA KIRA	N/ International Journa	l of Engineering Research and Applications
(IJERA)	ISSN: 2248-9622	www.ijera.com

Vol. 1, Issue 4, pp.1774-1784

fitted and

NO. OF HEIGHT LAND		356 0.85 mm 1 mm			provided a spherical movement.
TOR	Motor rotates inside the guide, in				
	which movement of motor is made by the meshing of motor teeth with		6	STEM 2	Stem 2 is a cylindrical pipe, which fits on the

PITCH

٠

٠

•

•

:

2 mm

		1	Γ				
4	MOTOR	Motor rotates					
		inside the guide, in					
		which movement		6	STEM 2	Stem 2 is a	Same NYLON
		of motor is made				cylindrical	can be used for
		by the meshing of				pipe, which	manufacturing of
		motor teeth with				fits on the	stem
		guide gear teeth.				ball joint of	2.Polypropylene
		Other end of the				stem 1. This	(PP) can also be
		motor will be				makes the	used for the ease
		connected to				stem 2 to	of manufacturing
		another component				move in	
		named as stem 1.				spherical	
		Both will be				direction.	
		screwed for				Other end has	
		attaching. Motor is				internal	
		readily available in				thread for	
		market, hence the				which torch	
		dimensions are				is screwed.	
		taken from a real				Hence due to	
		motor.				this total	
		Torque				setup,	
		: 1kg				orientation of	
		Voltage				the torch	
		: 12v - 24v				could be	
5	STEM 1	Stem 1 is	NYLON OR			adjusted and	
-	~	designed to	STEEL			a hole is	
		give support	Nylon can be			provided, so	
		for another	preferred as it is			that wire	
		component,	easy to			from the	
		stem 2 and	manufacture.			torch could	
		other end is	Nylon is a			be	
		to be fitted to	thermoplastic			incorporated.	
		motor. There	silky material. It				
		are slots	is made of				
		which are	repeating units	7	TORCH	Torch is the	
		provided for	linked by amide		EMBEDDE	last	
		stem 1 so that	bonds and is		D WITH	component	
		it could be	frequently		CAMERA	and the	
		screwed to	referred to as		Ci ilitici i	design of	
		motor by	polyamide (PA).			torch is taken	
		some screws.	poryumae (111).			from the	
		There is a				Mathematical	
		ball joint on				concept of	
		the end of				"PARABOL	
		stem 1, so				A" i.e	
		that stem 2				SINGLE	
		would be				FOCAL	
1	1	would be	1		1		

A.V. PRADEEP, R. SURYA KIRAN/ International Journal of Engineering Research and Applications

(IJERA)

ISSN: 2248-9622 Vol. 1, Issue 4, pp.1774-1784 www.ijera.com

		POINT (F).					commercial
		Internal					polypropylene is
		surface was					isotactic and has
		designed in a					an intermediate
		way that all					level of
		the rays					crystallinity
		would be					between that of
		focused on					low-density
		only one					polyethylene
		point. This					(LDPE) and
		modification					high-density
		was done to					polyethylene
		enhance the					(HDPE).
		light intensity					Commercial
		. In internal					isotactic PP has
		design for					a melting point
		every 10 ⁰					that ranges from
		,surface was					160 to 166 °C
		made flatten					(320 to 331 °F),
		so as to					depending on
		increase the					atactic material
		reflection.					and crystallinity.
		End of the					
		torch will					
		have a thread		III I	ESIGNING De	tails	
		for which it		The	software used ov	er here is PRO-E.The	following table
		sets in the		-		out the Commands us	ed and the usage
		stem 2 and		of th	e commands.		
		other end of					
		torch will		Tabl	e-2 List of the De	esign Commands used	1
		have a glass.					
		Top surface		SL	Name of the	List of the Design	Usuage
		contains a		No	Component	commands Used	Procedure
		hole in which		•			
		camera can		1	HELME	BOUNDARY	At start, open
		be installed			Т	BLEND	sketch so that
		and wiring				SURFACE	2D sections
		can be given				PROTRUSION	can be drawn.
		to remote				EXTRUDE	Draw half of
		along with the torch				MIRROR	the base part
							and using
		wiring.					MIRROR
8	TORC		Polypropylene				command total
0	H		(PP), also known				base can be
	11		as polypropene,				obtained.
			is a				Using sketch
			thermoplastic				draw the
			polymer used in				outlines of the
			a wide variety of				helmet
			applications.				including height, length
			"Ppricutions.	1		1	neight length
			Most				and width.

A	A.V. PKADEEP	, K. SUKYA KIKA (IJERA)	ISSN: 2248-96		Engineering Research and <u>www.ijera.com</u>	Applications
		()	Vol. 1, Issue 4			
				, FF	• •	
			Using BOUNDARY BLEND command, fill the surface of the head portion carefully without any un-uniformity.			PROTRUSION command, selecting the shape and length we can form the outer shape of the guide. Using EXTRUDE
			Using SURFACE command, the front extended part and surrounded part for head can be produced with a surface layer. Using PROTRUSION command, piping for the helmet can be created. Using EXTRUDE command, a hole of required thickness for guide can be created.			command, make a hole which fits a screw for holding to helmet. In sketch draw the internal shape of guide which looks like a teeth of required dimension. In sketch take another plane for the length of the teeth i.e length of the guide. Using PATTERN OF PROTRUSION command, selecting the
2	GUIDE	PROTRUSIO N EXTRUSIO N PATTERNO F PROTRUSIO N MIRROR	As this is top down approach, take the plane of helmet on which the guide is to fitted. In sketches, draw the shape of the guide and take another plane as reference draw the length of guide.			shape and length we can produce the internal teeth. Using MIRROR command, form the teeth throughout the guide.

			Vol. 1, Issue 4	, pp.1		<u>wwijeracom</u>	
3	MOTOR	EXTRUDE PATTERNOF EXTRUDE	Taking the plane of guide as the reference plane for motor, start the drawing. In sketch, draw the base of the motor which is a circle. Using EXTRUDE command,				holds the screws, and extrude the pattern of required thickness.
			increase the thickness of the base by selecting the sketch. In sketch, draw a circle of small length which acts as connector for base and motor tip. Using EXTRUDE command, increase the thickness up to required dimension. Using sketch, draw a star using "16 star" tip option. Using EXTRUDE command, selecting the star can make the star into a solid object of required thickness. Using PATTERN OF EXTRUDE	4	STEM 1	EXTRUDE REVOLVE	Taking motorplane as thereferenceplane, start thestem 1drawing.In sketch, drawthe shape ofthe shape ofthe base ofstem 1 inrequireddimensions.UsingEXTRUDECOMMAND,increase thethickness of thebase up torequiredthickness.In sketch, drawthe half shapeof ball jointwith respect tosome referenceaxis.UsingREVOLVEcommand,selecting theobject andselecting theaxis, object canbe revolvedand made in
			command, draw the shape on base of motor which	5	STEM 2	EXTRUDE REVOLVE	In sketch, draw

A.V. PRADEEP, R. SURYA KIRAN/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

		(IJERA)	ISSN: 2248-96	_	ww.ijera.com	
			Vol. 1, Issue 4	, pp.1774-1784		
			the stem 2 any			In sketch,
			give reference			taking a
			axis.			reference
			Using			axis draw
			REVOLVE			a parabola
			command,			according
			selecting the			to
			sketch as			calculated
			object and			dimensio
			selecting the axis for			n on one half of the
			reference,			solid.
			shape of stem 2			Using
			will be formed			REVOLV
			which looks			E
			like a cylinder.			command
			Using			, select
			EXTRUDE			the object
			command,			drawn in
			make a hole of			sketch
			required			and
			dimensions and			selecting
			select up to the			the
			surface so that			reference
			hole will be			axis,
			formed			make a
			throughout the			hollow
			solid.			surface
						which
6	TORCH	REVOLVE	In sketch,			creates
		PATTERN	draw half			the
		EXTRUDE	of the			internal surface of
			shape of the torch			the torch.
			and draw			In sketch,
			and draw an axis			mark the
			for			points on
			reference.			internal
			Using			surface
			REVOLV			where we
			Е			want to
			command			flatten the
			, selecting			surface.
			the object			Now
			and axis			draw the
			as the			lines
			reference			connectin
			a solid			g these
			object of			points,
			torch			and using
			shape is			PATTER
			formed.			N

A.V. PRADEEP, R. SURYA KIRAN/ International Journal of Engineering Research and Applications

A, y, I KADEI	(IJERA)	RAN/ International Journa ISSN: 2248-9622		w.ijera.com	pheations
		Vol. 1, Issue 4, pp.1774	4-1784		
		command , create the lines at uniform distance	2		GUIDE
		according to the dimensio ns and internal surface will be	3		MOTOR
		flattened uniformly which enhances the reflection.	4		STEM 1
		In sketch draw a hole in size of camera and with extrude, make a	5	0.	STEM 2
		hole by picking upto the surface.	6		TORCH

3.1 Images of the Components

Sl	Figure	Name of
No		the
		Compone
		nt
1		HELMET

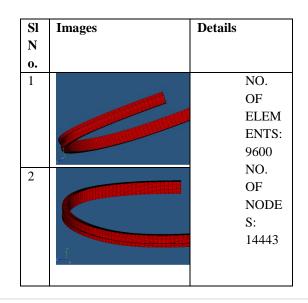
Image of the Assembled product

IV Manufacturing Details

A.V. PRADEEP, R. SURYA KIRAN/ International Journal of Engineering Research and Applications

(IJERA)

ISSN: 2248-9622


www.ijera.com

Vol. 1, Issue 4, pp.1774-1784

Sl	Name of the	Material
No.	Component	
1	GUIDE	MOULD BASE: EN28
		INSERTS: high chromium steel
		like stavax
2	TORCH	MOULD BASE: EN28 after we
		can harden up to 48 HRc
		INSERTS: high chromium steel
		like ramax(Cr <13%) which
		gives mirror finishing to the
		surface.
3	STEM 1	MOULD BASE: EN28
		INSERTS: high chromium steel
		like OHNS
4	STEM 2	MOULD BASE: EN28
		INSERTS: high chromium steel
		like stavax
5	HELMET	MOULD BASE: P20
		INSERTS: No inserts. We use
		plate itself as inserts

The manufacturing planning included the sizing of the material,Grinding to the size, Roughing the mould base (guide holes, insert pockets, slots etc. .), Finishing the mould base (boring, EDM for guide ways etc.), Roughing the inserts (0.3mm to 0.5mm stock), Hardening the inserts , Finishing the inserts (removing the stock), and Assembling the mould base.

V Analysis Details and Observations

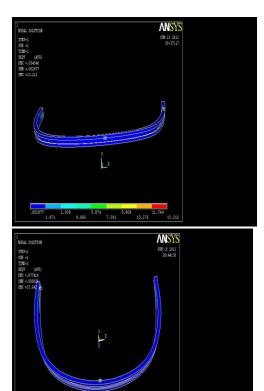
5.1 Material properties

Sl	Material	Range
No.	Property	/specification
1	YOUNG'S	200-400 Mpa
	MODULUS	
2	SHEAR	100-350 Mpa
	MODULUS	
3	TENSILE	8-12 Mpa
	STRENGTH	
4	BENDING	10-40 Mpa
	STRENGTH	
5	YIELD	15-20 Mpa
	STRENGTH	
6	DENSITY	0.910-0.940
		g/cm ³

From the material properties we came to know that yield strength of the LDPE is 15-20 Mpa. To know the maximum force the guide can withstand, we should know the force for which the maximum stress should not cross the yield strength of the material i.e. the maximum stress should be less than yield strength.

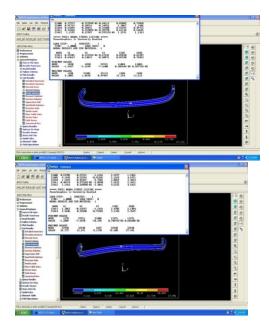

When 5N (500gm) is applied, maximum stress is around $13N/mm^2$.

When 10N (1000gm) is applied, maximum stress is around 27 N/mm².


From analysis, it could be observed that upto half kilogram (5N) this material can withstand and when going on increasing to 10N, fracture occurs.

A.V. PRADEEP, R. SURYA KIRAN/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1774-1784


DEFORMATION WHEN 5N IS APPLIED DEFORMATION WHEN 10N IS APPLIED

VON MISES STRESSES WHEN 5N IS APPLIED VON MISES

STRESSES WHEN 10N IS APPLIED

06628 6.215 12.422 18.63 24.838 3.111 9.319 15.526 21.734 27.9

MAXIMUM AND MINIMUM STRESSES

VI Programming Details

NAME : DUMPER SOFTWARE : HANDYPRO PROGRAM FOR 8051 MICROCONTROLLER MOV P1, #0FFH S1: JB P1.0, S2 ACALL FORWARD S2: JB P1.1, S1 ACALL BACKWARD LJMP S1 FORWARD: MOV A, #88H MOV R0, #4 BACK1: MOV P2, A ACALL DELAY RR A DJNZ R0, BACK1 RET BACKWARD: MOV A, #88H MOV R1, #4 BACK2: MOV P2, A ACALL DELAY RL A DJNZ R1, BACK2 RET DELAY: MOV 20H, #100 LOOP1: MOV 21H, #50 LOOP2: NOP DJNZ 21H, LOOP2 DJNZ 20H, LOOP1 RET

A.V. PRADEEP, R. SURYA KIRAN/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 1, Issue 4, pp.1774-1784

STEP ANGLE:

Step angle of the stepper motor is defined as the angle traversed by the motor in one step. To calculate step angle, simply divide 360 by number of steps a motor takes to complete one revolution. As we have seen that in half mode, the number of steps taken by the motor to complete one revolution gets doubled, so step angle reduces to half. As in above examples, Stepper Motor rotating in full mode takes 4 steps to complete a revolution, So step angle can be calculated as.... Step Angle $\phi = 360^{\circ}$ / 4 = 90°

Step Angle $\phi = 360^{\circ}$ / 4 = and in case of half mode step angle gets half so 45° .

In our case, motor rotates 24 steps to complete one revolution. Hence step angle can be calculated by

$$\emptyset = 360^{\circ} / 24 = 15^{\circ}$$

Hence step angle of our motor is 15° .

VII Discussion

A helmet with lighting system and in future with a camera system for enhancing the usability of the designed helmet. The safety helmet with a lighting and camera system could be expensive for manufacturing with the techniques available but the advent of the development of the materials technology could be available, accessible for the most of the other purposes also. These kind of helmets could be made usable for the traffic and other rescue action purposes also. Also finds use in Media, mining and marine. A light means for emitting a light is mounted to the helmet and positioned in the channel. A power supply is operationally coupled to the light means. The present invention relates to helmet devices and more particularly pertains to a new safety helmet with a lighting system for enhancing the usability in terms of the multi purposive in regards to the STEM concept and an embedded camera for providing knowledge about work.

Swing can be provided.Can be employed to Bullet proof helmets and given for military or police.Can be used for sports such as bicycling at night.Continuous color changing can be employed for identification purposeCan be used as tool for surgical activities for complex tasks.

With the addition of secret camera system, spying purpose can also be achieved.Motion pictures can also be taken up with the audio and video technology and also it can be made to capture the picture continuously by connecting the same to the satellite connection. (CCTV Technology).

VIII Results /Conclusion

These kinds of helmets when provided and build with the composite materials could serve lots of purposes including the engineers involved in the search operations can also use the same.Almost all the people from the diverse areas of science ,technology,engineering and medical could benefit a lot from this product .

IX BIBILOGRAPHY

BOOKS

- 1. Production Technology (manufacturing Process) (Paperback) By Sharma
- 2. PRO/ENGINEER LESSON #8_ CREATING AN ENGINEERING DRAWING
- 3. REVERSE ENGINEERING CODE WITH IDA PRO
- 4. MANUFACTURING AUTOMATION, MANUFACTURING AUTOMATION COMPLIMENTARY SUBSCRIPTION, CLB MEDIA, ADVANCED MANUFACTURING TECHNOLOGIES, PRODUCTS, APPLICATIONS, INDUSTRIAL AUT.PDF
- 5. MANUFACTURING PROCESSES FOR ENGINEERING MATERIALS (5TH ED. KALPAKJIAN & AMP_ SMITH)
- 6. FUNDAMENTALS OF MODERN MANUFACTURING MATERIALS, PROCESSES, AND SYSTEMS.PDF BY PANDEL
- 7. PLASTICS MICROSTRUCTURE AND ENGINEERING APPLICATIONS.PDF BY: VIV
- 8. (EBOOK) PLANNING AND SCHEDULING IN MANUFACTURING AND SERVICES (SERIES IN OPERATIONS RESEARCH AND FINANCIAL ENGINEERING).PDF BY: DEEPAKBARH

WEBLINKS

- 9. www.BayScreens.net/Lutron_Sivoia
- 10. www.offenhaeuser-berger.de
- 11. http://www.alibaba.com/product-
- gs/304917433/mining_safety_lamp_mining_safety_helm et.html
- 12. http://www.directindustry.com/prod/sibille-famecaelectric/protective-helmets-with-light-8308-484634.html
- http://ljgdled.com/productinfo/detail_en_12_63_330.asp x
- 14. http://www.rajusafety.com/head-protection.html
- 15. http://www.khemanandent.com/safety-helmet-withtorch.html
- http://www.rutlandoutdoor.com/22676/Petzl-Trios-Helmet---Torch.html
- 17. http://www.cad-cam-books.us/pro-engineer_0005.php
- 18. www.rambus.com
- 19. http://www.freepatentsonline.com/5329637.html
- 20. www.acecontrols.com